650=2*(5+x^2+x^2)

Simple and best practice solution for 650=2*(5+x^2+x^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 650=2*(5+x^2+x^2) equation:



650=2(5+x^2+x^2)
We move all terms to the left:
650-(2(5+x^2+x^2))=0
We calculate terms in parentheses: -(2(5+x^2+x^2)), so:
2(5+x^2+x^2)
We multiply parentheses
2x^2+2x^2+10
We add all the numbers together, and all the variables
4x^2+10
Back to the equation:
-(4x^2+10)
We get rid of parentheses
-4x^2-10+650=0
We add all the numbers together, and all the variables
-4x^2+640=0
a = -4; b = 0; c = +640;
Δ = b2-4ac
Δ = 02-4·(-4)·640
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{10}}{2*-4}=\frac{0-32\sqrt{10}}{-8} =-\frac{32\sqrt{10}}{-8} =-\frac{4\sqrt{10}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{10}}{2*-4}=\frac{0+32\sqrt{10}}{-8} =\frac{32\sqrt{10}}{-8} =\frac{4\sqrt{10}}{-1} $

See similar equations:

| X=1/14y+9/3 | | 18-7x=-19-6x | | 8k-3=9k+10 | | (x+16)=(3x-24) | | Y=(x-3)/(x+4) | | -5+5w=20 | | 2x+9=(x-1) | | X=15y+110 | | 2a+24=8 | | 130=(130-x)+x | | z-1/2=1/8 | | 6m-8=3(2m+1) | | 15n^2-15n-6=0 | | 23/21=v+1/3 | | 2x=31-8 | | 7/2x-1/2x=3x+3/2-5/2x | | 2x-2=4x-26 | | 4x+12=9x+7-5x+5 | | 8a+54=6 | | 2m=2m | | -11=5x^2+11 | | -1=5x-7x+7 | | 6-5(4r-4)=-44 | | 5(d-2)=7(d+4) | | 150=5x/4-300 | | -4f−9=-5f | | v/4+12=16 | | 11y-3=63 | | x/3-4=75 | | 2n+3-7n=-7 | | x/1+1/3=6 | | 6+9x=6x-8x+27 |

Equations solver categories